Discrimination of alfalfa populations for resistance to *Aphanomyces euteiches* with real-time quantitative PCR

G. J. Vandemark and B. M. Barker

USDA-ARS, Prosser, WA

Aphanomyces euteiches

Plant pathogen that causes severe root rot disease in alfalfa, peas, and beans

Affected

Infected alfalfa

Aphres Aphsus

Rating¹ Alfalfa for Aphanomyces Resistance

- 1 = healthy(R)
- 2= slight necrosis of roots and hypocotyl (R)
- 3 = moderate necrosis and stunting (S)
- 4 =extensive necrosis and stunting (S)
- 5= dead seedling (S)

¹National Alfalfa Variety Review Board

Alfalfa Cultivar Classification¹ for Resistance to Aphanomyces Root Rot

- High Resistance = > 50% resistant plants
- Resistance = 31-50% resistant plants
- Moderate Resistance = 15-30% resistant plants
- Low Resistance = 6-14% resistant plants
- Susceptible = < 6% resistant plants

¹National Alfalfa Variety Review Board

Limitations of accepted system for evaluation of resistance to *A. euteiches*

• Disease rating scale is subject to within and between-evaluator variation.

 Rating system has limited discriminatory power due to use of a semi-continuous scale.

• Over 200 plants must be individually scored for each variety.

Alternative: Use quantitative PCR to determine amount of pathogen in infected roots.

Separation of Reporter Dye and Quencher Dye Increases Fluorescence

OBJECTIVES

• Use quantitative PCR to investigate the relationship between resistance and quantity of *Aphanomyces* DNA in individual plants.

• Discriminate between resistant and susceptible check alfalfa populations using qPCR.

• Discriminate between commercial cultivars using qPCR.

MATERIALS and METHODS

Pathogen isolates

A. euteiches MF-1* (Race 1)

A. euteiches MW5 (Race 1)

A. euteiches NC 1* (Race 2)

A. euteiches WI-98 (Race 2)

* Type isolates for races 1 and 2

Alfalfa Check Varieties

Race 1: Saranac (S), WAPH - 1 (R)

Race 2: Saranac (S), WAPH - 1 (S),

WAPH - 5 (R)

Plant Inoculations

• NAAIC standardized test (1000 zoospores/plant).

• Plants were scored for DSI and individually harvested or randomly bulked (10 plants/bulk).

DNA was extracted from roots.

• qPCR, with 3 repetitions DNA sample.

SCAR Specific for A. euteiches

Primer-probe Set for Quantitative PCR¹ of *A. euteiches*

100-TGCGACGCTGAGCTTGACCTTGTCGAATGCCTCTTGGAC

TGCAATGTCGTCCAAGACTTTGCAACCACCGAGCGAGCC

Forward Primer 136F

Taqman Probe

GCGCACTGCGTCGATCTCTTCATCTCAGCTTTGT-211

Reverse Primer 211R

¹Amplifies a 76 bp fragment

RESULTS

RESULTS: Standard checks (disease free)

Saranac

Waph-1

RESULTS: Standard checks (A. euteiches MF-1)

Saranac (S)

Waph-1 (R)

Detection of A. euteiches with Quantitative PCR

Slope: -3.972257

Intercept: 36.183788

Correlation: -0.989962

Detection of A. euteiches in Single Plants

Detection of A. euteiches in Single Plants

DSI	WAPH-1 (MF-1)	WAPH-5 (NC-1)
1	1.27 a	4.11 a
2	1.79 a	5.74 b
3	3.98 b	16.13 c
4	12.86 c	15.47 c
LSD ($\alpha = 0.05$)	1.97	1.46
$\rho \text{ (Prob > } \rho)$	0.85 (<0.0001)	0.83 (<0.0001)

Bulk Analysis: Standard Check Populations

	A. euteiches MF-1		A. euteiches NC-1	
Population	ng DNA	DSI	ng DNA	DSI
WAPH-1	2.12a	2.79a	13.58a	3.99a
Saranac	8.75b	3.92b	12.66a	3.96a
WAPH-5	-	-	2.63b	2.66b
LSD(α =0.05)	1.60	0.13	1.23	0.13
$\rho(P > \rho)$	0.78 (0.0004)		0.79 (<0.0001)	

Bulk Analysis: Commercial Varieties

Variety	NAVRB Rating	ng DNA	DSI
WAPH-1	HR(✓)	1.08 (1)a	2.87 (3)ab
Winterking	R	2.25 (2)ab	2.70 (1)a
Ranier	HR	2.34 (3)ab	2.99 (6)b
WL 232HQ	HR	2.36 (4)ab	2.83 (2)ab
Ultralac	HR	2.71 (5) bc	2.88 (4)ab
WL 325HQ	R	3.72 (6)cd	2.98 (5)b
5246	MR	4.14 (8)d	3.29 (7)c
54V54	MR	4.66 (9)de	3.68 (12)d
Saranac	S(✓)	7.29 (17) f	3.84 (17)e
$LSD(\alpha = 0.05)$		1.31	0.22
$\rho (P > \rho)$	0.54 (< 0.0001)		

Summary of Results

• PCR primer/probe set selectively amplified pathogen DNA and not host DNA.

• Quantification of DNA based on PCR assay was very precise ($R^2 \ge 0.97$).

Summary of Results

• Correlation between amount of pathogen DNA and disease severity was positive and highly significant for single plants and bulked plant samples.

• Separation of commercial varieties based on qPCR closely approximated published classification based on results of standard test.

Future Research Objectives

• Develop quantitative PCR assays for other alfalfa pathogens.

• Use qPCR assays to develop alfalfa germplasm with extreme resistance to multiple soilborne pathogens.

• Use qPCR assays to study population dynamics in plants infected with multiple pathogens.

Contributors

- Dr. Richard Larsen: USDA-ARS Prosser, WA
- Dr. Mark Smith: Pioneer Hi-Bred, Intl. Connell, WA
- Bridget Barker: USDA-ARS Prosser, WA
- Marina Gritsenko: WSU-IAREC
- Dr. Craig Grau: University of Wisconsin